Consider Statement − I (p ∧ ~ q) ∧ (~ p ∧ q) is a fallacy Statement − II (p → q) ↔ (~ q → ~ p) is a tautology Statement I is True;Now, our final goal is to be able to fill in truth tables with more compound statements which have more than just one logical connective in them Statements like q→~s or (r∧~p)→r or (q&rarr~p)∧(p↔r) have multiple logical connectives, so we will need to do them one step at a time using the order of operations we defined at the beginning of this lectureAULA 04 RESPOSTAS 1) Verificar por tabela verdade se as seguintes equivalências são válidas Para verificarmos se as equivalência são válidas, trocamos o símbolo de equivalência ( ) pela bicondicional ( ), se resultar em uma tautologia é porque a equivalência é válida a) p ( p q) p Solved 2 6 Equations Real Numbers A B C P Q U V So Chegg Com P+q is a unit vector along x axis